W3Cschool
恭喜您成為首批注冊用戶
獲得88經驗值獎勵
在自然語言處理(NLP)領域,字符級循環(huán)神經網(wǎng)絡(char-RNN)是一種強大的工具,可以用于對文本數(shù)據(jù)進行建模和分類。本教程教你如何從頭開始構建和訓練一個字符級 RNN 模型,用于對姓氏進行分類。
我們將使用包含來自 18 種不同語言的姓氏的數(shù)據(jù)集。這些數(shù)據(jù)存儲在多個文本文件中,每個文件對應一種語言。我們需要將這些數(shù)據(jù)加載到內存中,并進行預處理。
from io import open
import glob
import os
def findFiles(path):
return glob.glob(path)
print(findFiles('data/names/*.txt')) # 查找所有數(shù)據(jù)文件
import unicodedata
import string
all_letters = string.ascii_letters + " .,;'"
n_letters = len(all_letters)
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn' and c in all_letters
)
print(unicodeToAscii('?lusàrski')) # 測試轉換功能
category_lines = {}
all_categories = []
def readLines(filename):
lines = open(filename, encoding='utf-8').read().strip().split('\n')
return [unicodeToAscii(line) for line in lines]
for filename in findFiles('data/names/*.txt'):
category = os.path.splitext(os.path.basename(filename))[0]
all_categories.append(category)
lines = readLines(filename)
category_lines[category] = lines
n_categories = len(all_categories)
print(category_lines['Italian'][:5]) # 查看意大利姓氏的前 5 個示例
為了將名稱輸入到神經網(wǎng)絡中,我們需要將字符轉換為張量。我們使用 one-hot 編碼來表示每個字符。
import torch
def letterToIndex(letter):
return all_letters.find(letter)
def letterToTensor(letter):
tensor = torch.zeros(1, n_letters)
tensor[0][letterToIndex(letter)] = 1
return tensor
def lineToTensor(line):
tensor = torch.zeros(len(line), 1, n_letters)
for li, letter in enumerate(line):
tensor[li][0][letterToIndex(letter)] = 1
return tensor
print(letterToTensor('J')) # 測試單個字符轉換
print(lineToTensor('Jones').size()) # 測試整個名稱轉換
我們將構建一個字符級 RNN 模型,用于根據(jù)姓氏的拼寫預測其來源。
import torch.nn as nn
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
combined = torch.cat((input, hidden), 1)
hidden = self.i2h(combined)
output = self.i2o(combined)
output = self.softmax(output)
return output, hidden
def initHidden(self):
return torch.zeros(1, self.hidden_size)
n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)
import random
def randomChoice(l):
return l[random.randint(0, len(l) - 1)]
def randomTrainingExample():
category = randomChoice(all_categories)
line = randomChoice(category_lines[category])
category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
line_tensor = lineToTensor(line)
return category, line, category_tensor, line_tensor
for i in range(10):
category, line, category_tensor, line_tensor = randomTrainingExample()
print('category =', category, '/ line =', line)
criterion = nn.NLLLoss()
learning_rate = 0.005
def train(category_tensor, line_tensor):
hidden = rnn.initHidden()
rnn.zero_grad()
for i in range(line_tensor.size()[0]):
output, hidden = rnn(line_tensor[i], hidden)
loss = criterion(output, category_tensor)
loss.backward()
for p in rnn.parameters():
p.data.add_(-learning_rate, p.grad.data)
return output, loss.item()
n_iters = 100000
print_every = 5000
plot_every = 1000
current_loss = 0
all_losses = []
def timeSince(since):
now = time.time()
s = now - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
start = time.time()
for iter in range(1, n_iters + 1):
category, line, category_tensor, line_tensor = randomTrainingExample()
output, loss = train(category_tensor, line_tensor)
current_loss += loss
if iter % print_every == 0:
guess, guess_i = categoryFromOutput(output)
correct = '?' if guess == category else '? (%s)' % category
print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
if iter % plot_every == 0:
all_losses.append(current_loss / plot_every)
current_loss = 0
import matplotlib.pyplot as plt
plt.figure()
plt.plot(all_losses)
plt.title("Training Loss Curve")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.show()
confusion = torch.zeros(n_categories, n_categories)
n_confusion = 10000
def evaluate(line_tensor):
hidden = rnn.initHidden()
for i in range(line_tensor.size()[0]):
output, hidden = rnn(line_tensor[i], hidden)
return output
for i in range(n_confusion):
category, line, category_tensor, line_tensor = randomTrainingExample()
output = evaluate(line_tensor)
guess, guess_i = categoryFromOutput(output)
category_i = all_categories.index(category)
confusion[category_i][guess_i] += 1
for i in range(n_categories):
confusion[i] = confusion[i] / confusion[i].sum()
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(confusion.numpy())
fig.colorbar(cax)
ax.set_xticklabels([''] + all_categories, rotation=90)
ax.set_yticklabels([''] + all_categories)
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
plt.show()
現(xiàn)在,我們可以使用訓練好的模型對新的姓氏進行分類。
def predict(input_line, n_predictions=3):
print('\n> %s' % input_line)
with torch.no_grad():
output = evaluate(lineToTensor(input_line))
topv, topi = output.topk(n_predictions, 1, True)
predictions = []
for i in range(n_predictions):
value = topv[0][i].item()
category_index = topi[0][i].item()
print('(%.2f) %s' % (value, all_categories[category_index]))
predictions.append([value, all_categories[category_index]])
predict('Dovesky')
predict('Jackson')
predict('Satoshi')
通過本教程,你學會了如何使用 PyTorch 構建和訓練字符級 RNN 模型,用于對姓氏進行分類。
Copyright©2021 w3cschool編程獅|閩ICP備15016281號-3|閩公網(wǎng)安備35020302033924號
違法和不良信息舉報電話:173-0602-2364|舉報郵箱:jubao@eeedong.com
掃描二維碼
下載編程獅App
編程獅公眾號
聯(lián)系方式:
更多建議: